Modification of direct runoff in a small forest catchment of the Krajeńskie Lakeland as a result of the watercourse develop-ment

key words: forest catchments, small retention, runoff modelling


The field investigations were carried out in a small forest catchment situated in the area of the Krajenskie Lakeland, in the Lipka Forest District, the Biskupice Forest Range. The catchment covers the area of 182ha; 95% is covered by forests and 5% by arable land and meadows. The field measurements comprised a continuous recording of the course water levels at the Thompson’s overflow and weekly measurements of groundwater levels in ten wells. Construction development was introduced on the area of the watercourse during the conducted research: six damming devices (installations) constant weirs-were constructed there. The sums of precipitation and indices of high water stages were calculated on the basis of direct measurements. Daily evapotranspiration was calculated according to Konstantinow method, and next its monthly and annual sums were calculated. Changes in storage levels were calculated on the basis of the groundwater levels measurements. The hydrological year 2004/2005 is an average one considering the annual atmospheric precipitation sum, as well as mean annual air temperature; the values are in the adequate intervals of 90–100% of the multi-annual mean values. The annual outflow coefficient from the catchment in focus equals to 0.330. It confirms the necessity of developing the discussed watercourse in order to create the so-called small retention. However, no significant influence was found of the development on the water balance components of the catchment. No clear influence of the watercourse development was found on the fluctuations of groundwater table in the shallowest wells situated in the closest neighbourhood of the course. Groundwater level fluctuations run almost simultaneously in all the ten wells. The influence of the watercourse bank development can be clearly described conducting an analysis of direct runoffs. 14 recorded high water waves were subject to analysis; 6 prior to the development and 8 following it. Each of the waves was described applying Nash’s conceptual model. Effective rainfall for the successive high water stages were calculated on the basis of the direct runoffs coefficients i.e. quotients of indices of the direct runoff and sums of precipitation bringing about the runoffs. A constant number of 2 reservoirs in a cascade was assumed. Assuming a constant number of reservoirs N=2 is conditioned by two factors: – the parameter should be constant for a given catchment, – calculations for N=1 and N=3 presented a lower coincidence of measured and simulated direct runoffs. Means of time-constants for high water waves after the development were higher by approx. 50% than for the waves prior to the construction. Resulting from it a hypothesis can be constructed here stating that the time of runoff water deposition in the catchment as a result of the weirs development was significantly prolonged. It can be thus assumed that systems of small and basic weirs should be applied in forest small retention programmes.


Miler A., Drobiewska E. 2007. Modification of direct runoff in a small forest catchment of the Krajeńskie Lakeland as a result of the watercourse develop-ment. Infrastruktura i Ekologia Terenów Wiejskich. Nr 2007/ 1